3.405 \(\int \frac {(A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx\)

Optimal. Leaf size=118 \[ -\frac {\sqrt {2} (A-B+C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 A \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 C \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}} \]

[Out]

2*A*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d/a^(1/2)-(A-B+C)*arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2
)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+2*C*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.31, antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.122, Rules used = {3045, 2985, 2649, 206, 2773} \[ -\frac {\sqrt {2} (A-B+C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 A \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 C \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x])/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(2*A*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(Sqrt[a]*d) - (Sqrt[2]*(A - B + C)*ArcTanh[(Sqr
t[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d) + (2*C*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c +
 d*x]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2985

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3045

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*
sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e +
f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n + 2)), x] + Dist[1/(b*d*(m + n + 2)), Int[(a + b*Sin[e + f*x
])^m*(c + d*Sin[e + f*x])^n*Simp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + (C*(a*d*m - b*c*(m + 1)) + b*B*
d*(m + n + 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] &&
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && NeQ[m + n + 2, 0]

Rubi steps

\begin {align*} \int \frac {\left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx &=\frac {2 C \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}+\frac {2 \int \frac {\left (\frac {a A}{2}+\frac {1}{2} a (B-C) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{a}\\ &=\frac {2 C \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}+\frac {A \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx}{a}+(-A+B-C) \int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx\\ &=\frac {2 C \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}-\frac {(2 A) \operatorname {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {(2 (A-B+C)) \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}\\ &=\frac {2 A \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} (A-B+C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 C \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.34, size = 86, normalized size = 0.73 \[ \frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \left (-\left ((A-B+C) \tanh ^{-1}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+\sqrt {2} A \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 C \sin \left (\frac {1}{2} (c+d x)\right )\right )}{d \sqrt {a (\cos (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x])/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(2*Cos[(c + d*x)/2]*(-((A - B + C)*ArcTanh[Sin[(c + d*x)/2]]) + Sqrt[2]*A*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]] +
2*C*Sin[(c + d*x)/2]))/(d*Sqrt[a*(1 + Cos[c + d*x])])

________________________________________________________________________________________

fricas [B]  time = 0.50, size = 227, normalized size = 1.92 \[ \frac {{\left (A \cos \left (d x + c\right ) + A\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} C \sin \left (d x + c\right ) + \frac {\sqrt {2} {\left ({\left (A - B + C\right )} a \cos \left (d x + c\right ) + {\left (A - B + C\right )} a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} + \frac {2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}}}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/2*((A*cos(d*x + c) + A)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt
(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*sqrt(a*cos(d*x + c) + a)*C*s
in(d*x + c) + sqrt(2)*((A - B + C)*a*cos(d*x + c) + (A - B + C)*a)*log(-(cos(d*x + c)^2 + 2*sqrt(2)*sqrt(a*cos
(d*x + c) + a)*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/sqrt(a))/(a*d
*cos(d*x + c) + a*d)

________________________________________________________________________________________

giac [B]  time = 2.15, size = 205, normalized size = 1.74 \[ \frac {\frac {4 \, \sqrt {2} C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}} + \frac {\sqrt {2} {\left (A \sqrt {a} - B \sqrt {a} + C \sqrt {a}\right )} \log \left ({\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{a} + \frac {2 \, A \log \left ({\left | {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right )}{\sqrt {a}} - \frac {2 \, A \log \left ({\left | {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right )}{\sqrt {a}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/2*(4*sqrt(2)*C*tan(1/2*d*x + 1/2*c)/sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a) + sqrt(2)*(A*sqrt(a) - B*sqrt(a) + C*
sqrt(a))*log((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/a + 2*A*log(abs((sqrt(a)*t
an(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3)))/sqrt(a) - 2*A*log(abs((sqrt(
a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3)))/sqrt(a))/d

________________________________________________________________________________________

maple [B]  time = 2.63, size = 337, normalized size = 2.86 \[ -\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a A -\sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a B +\sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a C -A \ln \left (\frac {4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a -A \ln \left (-\frac {4 \left (\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2 a \right )}{-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a -2 C \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{a^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^(1/2),x)

[Out]

-cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2^(1/2)*ln(4/cos(1/2*d*x+1/2*c)*(a^(1/2)*(a*sin(1/2*d*x+1/
2*c)^2)^(1/2)+a))*a*A-2^(1/2)*ln(4/cos(1/2*d*x+1/2*c)*(a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a))*a*B+2^(1/2)*
ln(4/cos(1/2*d*x+1/2*c)*(a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a))*a*C-A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*
(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a-A*ln(-4/(-2*cos(1/2*d*x+1
/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a-2*C*2^(1/2
)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/a^(3/2)/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{\cos \left (c+d\,x\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)*(a + a*cos(c + d*x))^(1/2)),x)

[Out]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)*(a + a*cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x) + C*cos(c + d*x)**2)*sec(c + d*x)/sqrt(a*(cos(c + d*x) + 1)), x)

________________________________________________________________________________________